我来回答



suny
圣天使
中考数学针对压轴题的应对方法?  
 无悬赏 |  浏览次数:11341次  |  此问题已结束
中考数学针对压轴题的应对方法?


bjjb
bjjb
风云使者
回答于:2013/3/4 13:57:00

    关于压轴题对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。

  压轴题难度有约定

  历年中考,压轴题一般都由3个小题组成。第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。

  决不靠猜题和押题

  压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程与图形的综合的几何问题也是常见的综合方式,动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。

  分析结构理清关系

  解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。如去年第25题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。又如2007年第25题,(1)、(2)两个小题是“递进关系”,(1)的结论由大题的已知条件证得,除已知外,(1)的结论又是解(2)所必要的条件之一。但(3)与(1)、(2)却是“平列关系”,(1)中,动点p在射线an上,而(3)根据已知,动点p在射线an上。它除了可能在射线an上,还可能在an的反向延长线上,或与点a重合。因此需要“分类讨论”。如果将(1)、(2)的结论作为条件解(3),将会使你坠入“陷阱”,不能自拔。

  应对策略必须抓牢

  学生害怕“压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。为了应对中考压轴题,教师可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上,因此在最后总复习阶段,还是应当把功夫花在夯实基础、总结归纳上,老师要帮助学生打通思路,掌握方法,指导他们灵活运用知识。有经验的老师常常把压轴题分解为若干个“小综合题”,并进行剪裁与组合,或把外省市的某些较难的“填空题”,升格为“简答题”,把“熟题”变式为“陌生题”,让学生练习,花的时间虽不多,但能取得较好的效果。我认为:综合题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。

 



1 共2条记录,分1页